Will Finding Water On The Moon Be the New “Striking Oil”?

Cubical spacecraft with solar panels orbiting above Moon

Searching for High-resolution Volatiles: Lunar Trailblazer Illustration (credit: Lockheed Martin Space)

In the 1800s and 1900s on Earth, you made your fortune if you discovered a new petroleum source. More colorfully spoken, “Striking it Rich!” was the subject of movies, such as 1956 Giant and the television series The Beverly Hillbillies. The competition is heating up for the discovery and capture lunar resources due to the new space race there. Aside from its symbolic value, water can enable life and be used for in situ fuels and other materials. What progress has been made to find and utilize lunar water? Water on the moon might be even more valuable than petroleum on Earth.

SustainSpace has covered water use and recycling on the International Space Station (ISS) in NASA Targets Reduced Water Usage for Long Duration Missions (2014 and Airbus ESA Advanced Closed Loop System (ACLS) (2018), etc. Some of that technology can be used on the Moon. Yet what is new?

Water on the Moon

Results from NASA’s 1994 Clementine mission suggested there was ice in a permanently shadowed region of the Moon This claim was confirmed by the 1998 Lunar Prospector mission which found that the largest concentrations of hydrogen exist in the areas of the lunar surface that are never exposed to sunlight, such as water ice at the lunar poles in permanently shadowed craters. Further, in 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) spacecraft and Lunar Reconnaissance Orbiter (LRO) worked together to establish the presence of water ice. In 2018, the Moon Mineralogy Mapper (M3), aboard the ISRO’s Chandrayaan-1, allowed the creation of the first high-resolution map of water ice on the lunar surface.(NASA, Ices).

A mineral map of strips of Moon indicating ice near poles.

Mineral map of Moon. Confirmed water ice are blue. (Credit: ISRO/NASA/JPL-Caltech/Brown University/USGS)

Lunar TrailBlazer

However, is there really water on the Moon? There has been ample evidence that there is water on the Moon, dating back to the Clementine collision to more recent observations. Yet how much and where?

NASA’s NASA’s Lunar Trailblazer mission hopes to provide new insights into the lunar water cycle, so as to better understand the lunar water cycle and inform future human missions as to where supplies of water may be found and extracted as a resource. There will be two major sensing instruments. The High-resolution Volatiles and Minerals Moon Mapper (HVM3) is a JPL-developed imaging spectrometer that is sensitive to the spectral fingerprints of the different forms of water. The Lunar Thermal Mapper (LTM), being developed by the University of Oxford, will detail the temperature properties of the Moon’s surface.

Paragon In Situ Water Purifier

How will people and lunar spacecraft process and utilize this water? One new item of technology is Paragon Space Development Corporation’s Hydrogen Oxygen Production (IHOP) whose function is to produce purified water on the Moon from regolith-based resources. Then once water purified water is produced (after extraction), oxygen for breathing and fuel, and hydrogen for fuel can be produced from that water. This could save the tremendous expense of transporting water from the Earth to the Moon an improve the sustainability of a lunar facility.

What’s special about the technology? “Paragon is developing an innovative, contaminant robust subsystem that removes acidic and water soluble contaminants found within ISR-derived water on the Moon .. that could corrode systems, degrade
electrolyzer …performance, or present serious toxicity issues to humans” (Tewes et al., 2020). In addition, a ” Cold Trap and Paragon’s Nafion-based Ionomer-membrane Water Purification (IWP) technology provide the IHOP subsystem with broadband contaminant filtration, while an ammonia (NH3) scrubber and water polisher are optimized for a specific contaminant and final trace contaminant removal, respectively.” (Id.) Then this purified water can then be processed by a “water electrolyzer that can generate hydrogen and oxygen streams” (TechPort).

Applications for Earth Sustainability

There are locations one the Earth where water is scare, and what water does exist is full of toxic minerals. The Paragon technology could potentially help address that issue. Remote mining locations in semi-arid areas could be a use case.

Sources

Caltech, Lunar Trailblazer (web page). Last viewed September 18, 2024.

NASA TechPort, ISRU-ISRU Hydrogen Oxygen Production (IHOP-BAA). Last viewed on September 16, 2024).

NASA, Water & Ices on the Moon (webpage). Last viewed September 18, 2024.

P. Tewes, J. Holquist, C. Bower and L. Kelsey (2020), “ISRU-derived water purification and Hydrogen Oxygen Production (IHOP) Component Development“,  Lunar Surface Science Workshop 2020 (LPI Contrib. No. 2241).

A New Frontier In Life Support with the I-HAB

Cylinder module with solar cell wings

I-HAB module (Credit: ESA)

I-HAB, a seldom-discussed component of the Lunar Gateway, could have an out-sized impact on the advancement of life support systems. This module is chiefly devoted to human habitation and life support. It is being developed primarily under the auspices of the European Space Agency who has devoted significant resources towards the development of closed-loop life support. Therefore, discussion of this module deserves to be revisited.

Continue reading

Impact of Deep Space Missions on Life Support Development

Orion capsule approaching Gateway

NASA Lunar Gateway

The reconfiguration of the Deep Space Gateway into the Lunar Gateway and the accelerated schedule to land humans on the Moon will have significant impact on the development of regenerative life support systems and the sustainability of deep space communities of humans.

The existing International Space Station (ISS) is in low Earth orbit. That orbit provides a microgravity environment, intermediate radiation and some logistic challenges. It also involves a strictly-controlled habitat and severe limitations on plant care due to the severely impacted schedule of astronauts. In contrast, the deep space environment differs from that in low Earth orbit in several ways. First, there is considerably more radiation. Second, low Earth is much better protected by the Earth’s magnetic field. Third, it is more difficult and much more expensive to re-supply deep space.

There has been much evolution of planned deep space human missions by NASA, and hence its partners. At one point, there was a plan to have astronauts visit and retrieve an asteroid. Then the plan was to have a large Deep Space Gateway station that would gain experience for deep space missions and advance life support technology. Then the plan was to place humans on the Moon in a sustainable manner. Now the plan is for a minimal Lunar Gateway and a human landing to the Moon by 2024 and worry about sustainability after that milestone.

A common denominator among the plans has been the need to use the NASA Space Launch System (SLS) rocket and the Orion crew capsule. The SLS is an extremely powerful vehicle in terms of both propulsion and political clout. It will return some of the capabilities to NASA that were lost with the discontinuation of the Saturn V system. Since NASA has been strongly encouraged by the President to land humans on the Moon by 2024, private vehicles are now under consideration as well, if they can help achieve the deadline.

The original configuration of the Deep Space Gateway included a life support module that would have allowed the gateway to support astronauts with fewer resupply missions. It probably would have included a plant growth component.

However, due to the acceleration of a manned lunar landing mission, the Deep Space Gateway reconfigured minimalist approach focuses on providing an assembly node for short manned missions to the Lunar surface. There would also be a propulsion module and possibly an airlock module. A lunar lander would be ferried to the Gateway and the an Orion capsule would take astronauts to the Gateway. The astronauts would take the lander to the Moon for a few weeks, return to the Gateway and return to the Earth via the capsule. However, there will not be an enhanced life support module (at least not until much later).

According to a NASA source, after humans return to the Moon, then the Gateway and lunar base could focus on keeping people there on a sustainable basis. So plants in a long duration life support module might have to wait until after 2024.

The bottom line is that funding for deep space life support and sustainability will be likely delayed. If there are other cost overruns, life support and the biological sciences can get cut disproportionately. Since sustainability is untimely a cost-saver, this means that deep space communities will be more expensive for the foreseeable future, due to greater resupply expenses. The only silver lining is that there will be more time to “get it right” for sustainable life support technologies.

References